软件层面,在语言层面上,ZK更友好的格式,也会带来加速生成的过程,比如Aleo的Leo语言。再就是算法本身的优化,虽然说有一定的优化空间,但是要想有大的突破需要非常多的时间,毕竟牵涉到很多数学问题。
硬件层面,也就是所谓的硬件加速, CPU、GPU、FPGA、ASIC。CPU与GPU相比在大数据多任务处理上,肯定GPU更占优势。FPGA与GPU相比,在兼顾了灵活性的基础上,无论是计算能力和功耗性能上都要更强,缺点是性价比太低。ASIC是的,其他的硬件形态都是无法比拟的。
●在算法过程中频繁的数据混洗使得NTT难以在计算集群中分布,无法并行计算,并且由于需要从大型数据集中加载和卸载数据,在硬件上运行时需要大量带宽。即使硬件操作很快,这可能也会导致速度变慢。例如,如果硬件芯片的内存为16GB或更少,那么在100GB的数据集上运行NTT将需要通过网络加载和卸载数据,这可能会大大降低操作速度。
按照官方的设想和规划未来在Aleo上每天的交易量都是上亿美金的规模,在这样大数据量的要求下,每时每刻都有证明需要被委托出去在极短的时间内完成证明的生产,不可能指望显卡能解决这个问题。就像AI大模型训练一样,早期数据量和参数少的情况下可以用消费级显卡,但是现在更多的都是为AI训练设计的专用芯片和机器。